MUSCLE DYSFUNCTION DURING WALKING IN CHILDREN WITH CEREBRAL PALSY

1,2 James Wakeling, 2Roisin Delaney and 2Israel Dudkiewicz
1The Royal Veterinary College, UK,
2The Royal National Orthopaedic Hospital, UK; email: jwakeling@rvc.ac.uk

INTRODUCTION
Cerebral palsy (CP) is a disorder of movement or posture due to a lesion in the immature brain [1]. Release of the gamma system from higher inhibitory control results in the muscles being hyperexcitable [2], and they exhibit elevated muscle tone and excessive co-contraction during walking [3]. CP is typically assessed using gross measures of gait (e.g. walking velocity), or overall motor function and sometimes by the joint kinetics. However, none of these measures are direct measures of the muscle dysfunction.

The purpose of this study was to quantify the differences in the myoelectric activity between children with CP, and healthy controls, in order to determine the extent of the muscle dysfunction during walking.

METHODS
Surface electromyography (EMG) was performed bilaterally on the rectus femoris, semimembranosus, medial gastrocnemius and tibialis anterior from 36 healthy children and young adults (age range 3.1 – 21.0 years) and 17 children and young adults with CP (4.8 – 21.5 years). Each child walked along a walkway at their preferred velocity. Segmental kinematics were used to determine the time of foot-contact with the ground, and thus to window the walking into stance phase, swing phase, or the entire stride cycles. Data were analyzed from 5-15 strides per individual.

The EMG was resolved into its intensity (a correlate of the power of the signal) in time-frequency space using wavelet techniques [4]. The intensities (at each frequency-band analyzed) were correlated between antagonistic muscles. Correlations were thus calculated across a range of frequencies to make a spectrum. The correlation spectra were used as a measure of the co-contraction. Correlation spectra between the asymptomatic and cerebral-palsied conditions were compared using principal component techniques [5].

RESULTS AND DISCUSSION
Intensity spectra showed that the cerebral-palsied condition had systematically higher mean EMG frequencies than the asymptomatic controls. The extensor muscles (rectus femoris and medial gastrocnemius) showed higher intensities, but the tibialis anterior intensity was less than the asymptomatic controls. The extensor muscles (rectus femoris, and medial gastrocnemius) showed higher intensities, but the tibialis anterior intensity was less than the asymptomatic controls. The extensor muscles (rectus femoris, and medial gastrocnemius) showed higher intensities, but the tibialis anterior intensity was less than the asymptomatic controls.

The principal components of the co-contraction could be distinguished between the cerebral-palsied and asymptomatic conditions, and were most different for the more distal muscles (Fig. 1B).

CONCLUSIONS
The EMG signals during walking are markedly different between children with cerebral palsy and asymptomatic controls. Time-frequency analysis of the spectra and the co-contractions provide direct measures of the muscle dysfunction and have an application for quantifying the severity of the condition or the efficacy of treatment.

REFERENCES

Table 1. Changes in the EMG spectra during walking. Arrows indicate if the children with cerebral palsy had significantly (t-test: p<0.05), greater or smaller intensity or frequency from their EMG signals compared to the asymptomatic controls.

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Stance phase</th>
<th>Swing phase</th>
<th>Stride</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean intensity</td>
<td>Mean frequency</td>
<td>Mean intensity</td>
</tr>
<tr>
<td>Rectus femoris</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Semimembranosus</td>
<td>n.s.d.</td>
<td>↑</td>
<td>n.s.d.</td>
</tr>
<tr>
<td>Tibialis anterior</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>M. gastrocnemius</td>
<td>↑</td>
<td>↑</td>
<td>n.s.d.</td>
</tr>
</tbody>
</table>

Figure 1: [A] Correlation spectra (mean ± s.e.) and [B] principal component (PC) loading scores for co-contractions for all subjects between the tibialis anterior and medial gastrocnemius during walking.