THE EFFECT OF MUSCLE IMBALANCE ON FOOT PRESSURE IN PEDIATRIC PATIENTS

Michael El-Shammaa, Nicholas Gryfakis, Kelly Lenard, Nathan Lashley, Louis Santangelo, Luciano Dias
Motion Analysis Center, Children’s Memorial Hospital, Chicago, IL
email: melshamama@childrensmemorial.org; web: www.childrensmemorial.org/depts/motionanalysis/
College of Podiatric Medicine, Finch University of Health Sciences, Chicago Medical School

INTRODUCTION
Foot pressure data is frequently collected during gait analysis. Analysis of this data is typically done by dividing the foot pressure into regions with a mask that is not customized to the shape of the individual foot. Previous studies have successfully used these generic foot masks to evaluate varus and valgus foot deformities [1]. The effect of posterior tibialis [2] and anterior tibialis [3] dysfunction on foot pressure data has also been examined in vitro. This study examined average peak foot pressure on patients with a strength imbalance between a major evertor and invertor of the foot.

METHODS
Five able-bodied subjects (ten limbs; mean age = 11.8 yrs) and 15 patients with a mean age of 10.5 yrs (12 cerebral palsy, 1 pdd, 1 lipoma, and 1 clubfoot) were included. The same physical therapist measured all patients’ muscle strengths. A minimum difference in muscle strength grade of 1 (on the 0 to 5 scale) between the peroneus brevis (evertor) and the posterior tibialis (inverter) was observed for inclusion. The patients were divided into 2 groups. Group 1 (n=7 limbs) showed greater posterior tibialis strength. Group 2 (n=10 limbs) showed greater peroneus brevis strength.

RESULTS AND DISCUSSION
Group 1 (Inv. > Ev.) showed an average posterior tibialis strength of 3+/4- and an average peroneus brevis strength of 2+. Group 2 (Ev. > Inv.) showed an average peroneus brevis strength of 3 and an average posterior tibialis strength of 2+.

Figure 2 shows that the medial to lateral ratio was not statistically different between the normal group and the Inv. > Ev. group, for both the midfoot (p = 0.38) and the forefoot (p = 0.91). The normal ratio is approximately 0.5 for the midfoot (the medial midfoot shows approximately half the mean peak pressure as the lateral midfoot), and approximately 1.0 for the forefoot (same mean peak pressure for both medial forefoot and lateral forefoot). The Ev. > Inv. group showed significantly increased mean peak medial pressure for both the midfoot (p = 0.001) and the forefoot (p = 0.002).

CONCLUSIONS
The overlaid image of the plantar surface of the foot is a useful tool in orthotic fabrication, foot pressure analysis and research. These results show that a foot evertor/inverter strength imbalance can have a significant effect on foot pressure data. In subjects where the posterior tibialis is significantly stronger than the peroneus brevis, the pressure ratio is not significantly affected; however, when the posterior tibialis is significantly weaker than the peroneus brevis, there is a significant shift of pressure towards the medial aspect of the forefoot and midfoot. This may be an important factor when considering the implications of a surgery that may weaken the posterior tibialis. Future studies will focus on the effects of an imbalance between other muscle groups.

REFERENCES

ACKNOWLEDGEMENTS
Children’s Memorial Hospital Motion Analysis Center Research and Education Fund, Claudia Kelp-Lenane.